The Role of High Frequencies in Convolutive Blind Source Separation of Speech Signals
نویسندگان
چکیده
In this paper, we investigate the importance of the high frequencies in the problem of convolutive blind source separation (BSS) of speech signals. In particular, we focus on frequency domain blind source separation (FD-BSS), and show that when separation is performed in the low frequency bins only, the recovered signals are similar in quality to those extracted when all frequencies are taken into account. The methods are compared through informal listening tests, as well as using an objective measure.
منابع مشابه
Convolutive blind source separation of speech signals in the low frequency bands
Sub-band methods are often used to address the problem of convolutive blind speech separation, as they offer the computational advantage of approximating convolutions by multiplications. The computational load, however, often remains quite high, because separation is performed on several sub-bands. In this paper, we exploit the well known fact that the high frequency content of speech signals t...
متن کاملBlind separation and deconvolution for convolutive mixture of speech using SIMO-model-based ICA and multichannel inverse filtering
We propose a new two-stage blind separation and deconvolution (BSD) algorithm for a convolutive mixture of speech, in which a new Single-Input Multiple-Output (SIMO)-modelbased ICA (SIMO-ICA) and blind multichannel inverse filtering are combined. SIMO-ICA can separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from independent sources as they are at th...
متن کاملSeparating Underdetermined Convolutive Speech Mixtures
A limitation in many source separation tasks is that the number of source signals has to be known in advance. Further, in order to achieve good performance, the number of sources cannot exceed the number of sensors. In many real-world applications these limitations are too restrictive. We propose a method for underdetermined blind source separation of convolutive mixtures. The proposed framewor...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملBlind Source Separation of Convolutive Mixtures of Speech in Frequency Domain
This paper overviews a total solution for frequencydomain blind source separation (BSS) of convolutive mixtures of audio signals, especially speech. Frequency-domain BSS performs independent component analysis (ICA) in each frequency bin, and this is more efficient than time-domain BSS. We describe a sophisticated total solution for frequency-domain BSS, including permutation, scaling, circular...
متن کامل